扒开双腿疯狂进出爽爽爽动态照片_欧美乱妇狂野欧美在线视频_免费无码AV片在线观看潮喷_午夜影院在线费看_四房婷婷_野花影院手机在线观看免费3_麻豆星空传媒果冻传媒大象_小罗莉a极毛片_日韩色情无码免费A片_黄网站免费线观看免费_碧思思网址导航_日产乱码一卡二卡不卡_中国国语毛片免费观看视频_日本无码成人片在线观看波多_国产一性一交一伦一A片视频_色欲AV巨乳无码一区二区_少妇厨房愉情理9伦片视频_中国亚洲女人69内射少妇_女人荫蒂被添舒服的A片_在线看免费观看AV深夜影院

FAQ
You are here:Home >> News >> FAQ
What causes a battery to self-discharge
769 2023-10-23
Battery self-discharge is a complex process involving many factors. In order to better understand this problem, this paper will conduct a detailed analysis from the chemical reaction, battery internal resistance, positive and negative active substances, impurities and moisture, and battery packaging and storage.
1. Chemical reaction
The main cause of battery self-discharge is the spontaneous chemical reaction within the battery. In a battery, there is an electrochemical reaction between the positive and negative electrode materials and the electrolyte, which creates an electric current in the external circuit. Inside the battery, however, these chemical reactions can also cause a loss of power.
For lithium metal batteries, self-discharge is mainly due to REDOX reactions. During the charging process, lithium ions escape from the positive electrode material and migrate to the negative electrode material. Over time, the lithium ions will react with the negative electrode material and become lithium metal again, resulting in a loss of electricity.
2, battery internal resistance
The internal resistance of the battery refers to the internal resistance of the battery, which has a certain impact on the self-discharge of the battery. The main sources of internal resistance include electrode materials, electrolytes, diaphragms, and defects in the manufacturing process.
The internal resistance causes the voltage inside the battery to drop, which affects the output performance of the battery. In addition, the internal resistance will increase the heat inside the battery, accelerate the deterioration rate of the battery, and then lead to the attenuation of the battery capacity. Therefore, reducing the internal resistance of the battery is an important means to improve the performance of the battery and reduce the self-discharge rate.
3, positive and negative active substances
Positive and negative active substances are important components of batteries, which are closely related to battery self-discharge. The positive electrode materials generally include transition metal oxides, fluorates, etc., while the negative electrode materials include graphite, hard carbon, etc.
The stability, particle size, density and other factors of positive and negative active substances will affect the self-discharge rate of the battery. For example, the instability of the active substance may cause it to decompose during storage, triggering self-discharge. In addition, the particle size and density of the active substance also affect the electrochemical performance and self-discharge rate of the battery.
4. Impurities and moisture
Impurities and moisture are also important factors affecting the self-discharge of batteries. In the battery manufacturing process, some impurities may be mixed, such as metal particles, oxides, and so on. These impurities will accelerate the deterioration process of the battery, resulting in an increase in the self-discharge rate.
In addition, moisture is also one of the important factors of battery self-discharge. The water in the battery will react with the positive and negative electrode materials, resulting in the attenuation of the battery capacity. Especially in the high temperature and high humidity environment, the influence of water on the self-discharge of the battery is more significant. Therefore, reducing the impurity and moisture content in the battery is an effective means to improve the battery performance and reduce the self-discharge rate.
5, battery packaging and storage
Battery packaging and storage methods also have an important impact on battery self-discharge. The battery package should be tight to prevent the entry of air and moisture. At the same time, the storage environment also needs to pay attention to, high temperature, high humidity, direct sunlight and other environments will accelerate the deterioration process of the battery, resulting in an increase in the self-discharge rate.
In order to reduce the self-discharge rate of the battery, the following storage measures can be taken: First, the appropriate packaging materials should be selected, such as aluminum foil film, good air permeability plastic bags, etc., to seal and moisture-proof, secondly, the battery should be stored in a cool and dry place to avoid direct sunlight and high temperature and high source environment; Finally, for long-term storage batteries, they should be regularly charged or replaced to maintain the activity of the battery.
In short, battery self-discharge is a complex process, which is affected by many factors. In order to reduce the self-discharge rate of the battery, it is necessary to comprehensively consider the chemical reaction, internal resistance of the battery, positive and negative active substances, impurities and moisture, and battery packaging and storage. By optimizing the battery structure and manufacturing process and selecting the appropriate storage method, the self-discharge rate of the battery can be reduced from the source, and the stability and service life of the battery can be improved.
主站蜘蛛池模板: 皋兰县| 江阴市| 永春县| 化德县| 盐津县| 阜城县| 汶上县| 弥勒县| 新晃| 偏关县| 阜新市| 额济纳旗| 大安市| 乌兰浩特市| 资溪县| 宝清县| 大同县| 博乐市| 乐山市| 鄄城县| 梨树县| 台南市| 广东省| 南江县| 姜堰市| 时尚| 五莲县| 手机| 襄樊市| 松原市| 双流县| 双城市| 甘洛县| 化德县| 莆田市| 龙州县| 平利县| 林西县| 铁力市| 长葛市| 库尔勒市|